
pygtc Documentation
Release 0.4

Sebastian Bocquet and Faustin W. Carter

Apr 06, 2022

CONTENTS

1 Contents: 3
1.1 Installation . 3
1.2 Example 1: Making a GTC/triangle plot with pygtc . 5
1.3 Example 2: Making a GTC/triangle plot with Planck and WMAP data! 10
1.4 API . 12

2 Citation 17

3 Contributions, problems, questions, recommendations 19

Index 21

i

ii

pygtc Documentation, Release 0.4

Make a publication-ready giant-triangle-confusogram (GTC) with just one line of code!

This documentation is for the pygtc package, which is hosted at GitHub.

What is a Giant Triangle Confusogram?

A Giant-Triangle-Confusogram (GTC, aka triangle plot) is a way of displaying the results of a Monte-Carlo Markov
Chain (MCMC) sampling or similar analysis. The recovered parameter constraints are displayed on a grid in which the
diagonal shows the one-dimensional posteriors (and, optionally, priors) and the lower-left triangle shows the pairwise
projections. You might want to look at a plot like this if you are fitting model to data and want to see the parameter
covariances along with the priors.

Although several other packages exists to make such a plot, we were unsatisfied with the amount of extra work required
to massage the result into something we were happy to publish. With pygtc, we hope to take that extra legwork out of
the equation by providing a package that gives a figure that is publication-ready on the first try!

Here’s an example of a GTC (generated from Planck and WMAP data):

Note about contour levels In the above example, you see two sets of contour levels at 68% and 95% (in addition, pygtc
could also show the 99% contour level if you want). Note that these are indeed the 68% and 95% contour levels, and
not 1, 2, and 3 sigma levels (which, in two dimensions, correspond to the 39%, 86%, and 99% contour levels). Your
posterior distributions will in general not be Gaussian, and so there is no right or wrong in choosing one or the other
definition. We therefore recommend that you stick to the definition that is commonly used in your field, and clearly
state what quantities you are showing in your figure caption. You can switch to displaying sigma levels by setting
sigmaContourLevels to True.

CONTENTS 1

https://github.com/SebastianBocquet/pygtc

pygtc Documentation, Release 0.4

2 CONTENTS

CHAPTER

ONE

CONTENTS:

1.1 Installation

1.1.1 Required packages

pygtc is compatible with Python 2.7 and 3.6 or greater and requires the following packages:

• numpy >= 1.5

• matplotlib >= 1.5.3 (preferably >= 2.0)

• scipy (optional)

• packaging

• pandas (optional – provides easy auto-naming of chains)

• pytest (optional – only needed for running unit tests)

• pytest-mpl (optional – only needed for running unit tests)

1.1.2 Downloading and installing

The latest stable version of pygtc is hosted at PyPi.

If you like pip, you can install with:

$ pip install pygtc

or, install the package hosted on conda-forge (may need to explicitly provide the channel with -c conda-forge):

$ conda install pygtc

Or, alternatively, download and extract the tarball from the above link and then install from source with:

cd /path/to/pygtc
python setup.py install

3

http://pypi.python.org/pypi/pygtc/

pygtc Documentation, Release 0.4

1.1.3 Development

Development happens at github. You can clone the repo with:

git clone https://github.com/SebastianBocquet/pygtc

And you can install it in developer mode with pip:

pip install -e /path/to/pygtc

or from source:

cd /path/to/pygtc
python setup.py develop

1.1.4 Running tests

For tests to for sure pass (i.e. reproduce pixel-perfect copies of our baseline images), you’ll want to have matplotlib
==3.5.1 installed and be working on python >=3.9. Additionally you’ll need to ensure that you are using freetype
==2.10.4. You’ll need pytest and pytest-mpl installed to run the tests, although pygtc functions fine without them.
You also should have the Arial font installed, as that is pygtc’s default font and tests will “fail” if matplotlib falls back
on Deja Vu Sans (even though the images produced might look perfectly fine). Test base images were produced on
Windows 10 using the Agg backend and if you are on another system there is no guarantee that you will get a pixel-
perfect copy of what the Agg backend produces. However, the images produced by the tests should still look great!
They are saved to a folder called result_images in whatever directory you ran the tests from.

To run the test suite, use the pytest utility from within the pygtc package directory:

cd /path/to/pygtc
pytest --mpl --mpl-results-path=results

There are 25 tests to run, and it should take between 20-30 seconds to run them all. If the first test fails, there may
be something wrong with your matplotlib install in general (or maybe something weird in your rcParams). If you are
missing pandas or scipy, a few tests will be skipped. If you get a ton of errors make sure you read the first paragraph
in this section and you have all the prerequisites installed. If matplotlib can’t find Arial and you recently installed it,
delete your matplotlib font cache and try again. If you are running on matplotlib 2.x, then expect the chain label tests
to fail because mpl 2 and 3 handle margins slightly differently. If errors persist, let us know at GitHub.

1.1.5 Contribution and/or bug reports

If you like this project and want to contribute, send a message over at the gitHub repo and get involved. If you find a
bug, please open an issue at gitHub. Better yet, you can try and fix the bug and submit a pull request!

4 Chapter 1. Contents:

https://github.com/SebastianBocquet/pygtc

pygtc Documentation, Release 0.4

1.2 Example 1: Making a GTC/triangle plot with pygtc

This example is built from a jupyter notebook hosted on the pyGTC GitHub repository.

1.2.1 Import dependencies

%matplotlib inline
%config InlineBackend.figure_format = 'retina' # For mac users with Retina display
from matplotlib import pyplot as plt
import numpy as np
import pygtc

1.2.2 Generate fake data

Let’s create two sets of fake sample points with 8 dimensions each. Note that chains are allowed to have different
lengths.

Create Npoints samples from random multivariate, nDim-dimensional Gaussian
def create_random_samples(nDim, Npoints):

means = np.random.rand(nDim)
cov = .5 - np.random.rand(nDim**2).reshape((nDim,nDim))
cov = np.triu(cov)
cov += cov.T - np.diag(cov.diagonal())
cov = np.dot(cov,cov)
samples = np.random.multivariate_normal(means, cov, Npoints)
return samples

Create two sets of fake data with 8 parameters
np.random.seed(0) # To be able to create the same fake data over and over again
samples1 = create_random_samples(8, 50000)
samples2 = 1+create_random_samples(8, 70000)

1.2.3 Omit one parameter for one chain

Let’s assume the samples1 does not include the second to last parameter. In the figure, we only want to show this
parameter for samples2. pygtc will omit parameters that only contain nan.

samples1[:,6] = None

1.2.4 Minimal example

Note that numpy throws a RuntimeWarning because we set one of the axes of samples1 to None just above. As we
understand the warning, let’s move on!

GTC = pygtc.plotGTC(chains=[samples1,samples2])

1.2. Example 1: Making a GTC/triangle plot with pygtc 5

https://github.com/SebastianBocquet/pygtc/blob/master/demo.ipynb

pygtc Documentation, Release 0.4

pygtc/pygtc.py:558: RuntimeWarning: All-NaN axis encountered
for k in range(nChains)]), axis=0)

pygtc/pygtc.py:560: RuntimeWarning: All-NaN slice encountered
for k in range(nChains)]), axis=0)

1.2.5 Complete the figure

Now let’s add: * axis and data labels * lines marking some important points in parameter space * Gaussian distributions
on the 1d histograms that could indicate Gaussian priors we assumed

Note that all these must match number of parameters!

List of parameter names, supports latex
NOTE: For capital greek letters in latex mode, use \mathsf{}
names = ['param name',

'$B_\mathrm{\lambda}$',
'E', '$\\lambda$',
'C',
'D',
'$\mathsf{\Omega}$',
'$\\gamma$']

Labels for the different chains
chainLabels = ["data1 λ",

"data 2"]

List of Gaussian curves to plot
#(to represent priors): mean, width
Empty () or None if no prior to plot
priors = ((2, 1),

(continues on next page)

6 Chapter 1. Contents:

pygtc Documentation, Release 0.4

(continued from previous page)

(-1, 2),
(),
(0, .4),
None,
(1,1),
None,
None)

List of truth values, to mark best-fit or input values
NOT a python array because of different lengths
Here we choose two sets of truth values
truths = ((4, .5, None, .1, 0, None, None, 0),

(None, None, .3, 1, None, None, None, None))

Labels for the different truths
truthLabels = ('the truth',

'also true')

Do the magic
GTC = pygtc.plotGTC(chains=[samples1,samples2],

paramNames=names,
chainLabels=chainLabels,
truths=truths,
truthLabels=truthLabels,
priors=priors)

1.2. Example 1: Making a GTC/triangle plot with pygtc 7

pygtc Documentation, Release 0.4

1.2.6 Make figure publication ready

• See how the prior for 𝐵𝜆 is cut off on the left? Let’s display 𝐵𝜆 in the range (-5,4). Also, we could show a
narrower range for 𝜆 like (-3,3).

• Given that we’re showing two sets of truth lines, let’s show the line styles in the legend (legendMarker=True).

• Finally, let’s make the figure size publication ready for MNRAS. Given that we’re showing eight parameters,
we’ll want to choose figureSize='MNRAS_page' and show a full page-width figure.

• Save the figure as fullGTC.pdf and paste it into your publication!

List of parameter ranges to show,
empty () or None to let pyGTC decide
paramRanges = (None,

(-5,4),
(),
(-3,3),
None,
None,
None,
None)

Do the magic
GTC = pygtc.plotGTC(chains=[samples1,samples2],

paramNames=names,
chainLabels=chainLabels,
truths=truths,
truthLabels=truthLabels,
priors=priors,
paramRanges=paramRanges,
figureSize='MNRAS_page',
plotName='fullGTC.pdf')

8 Chapter 1. Contents:

pygtc Documentation, Release 0.4

1.2.7 Single 2d panel

See how the covariance between C and D is a ground-breaking result? Let’s look in more detail! Here, we’ll want
single-column figures.

Redefine priors and truths
priors2d = (None,(1,1))
truths2d = (0,None)

The 2d panel and the 1d histograms
GTC = pygtc.plotGTC(chains=[samples1[:,4:6], samples2[:,4:6]],

paramNames=names[4:6],
chainLabels=chainLabels,
truths=truths2d,
truthLabels=truthLabels[0],
priors=priors2d,
figureSize='MNRAS_column')

Only the 2d panel
Range2d = ((-3,5),(-3,7)) # To make sure there's enough space for the legend

GTC = pygtc.plotGTC(chains=[samples1[:,4:6],samples2[:,4:6]],
paramNames=names[4:6],
chainLabels=chainLabels,
truths=truths2d,
truthLabels=truthLabels[0],
priors=priors2d,
paramRanges=Range2d,
figureSize='MNRAS_column',
do1dPlots=False)

1.2. Example 1: Making a GTC/triangle plot with pygtc 9

pygtc Documentation, Release 0.4

1.2.8 Single 1d panel

Finally, let’s just plot the posterior on C

Bit tricky, but remember each data set needs shape of (Npoints, nDim)
inputarr = [np.array([samples1[:,4]]).T,

np.array([samples2[:,4]]).T]
truth1d = [0.]
GTC = pygtc.plotGTC(chains=inputarr,

paramNames=names[4],
chainLabels=chainLabels,
truths=truth1d,
truthLabels=truthLabels[0],
figureSize='MNRAS_column',
doOnly1dPlot=True)

1.3 Example 2: Making a GTC/triangle plot with Planck and WMAP
data!

This example is built from a jupyter notebook hosted on the pyGTC GitHub repository.

1.3.1 Download the data

The full set of chains from the Planck 2015 release is available at http://pla.esac.esa.int/pla/#cosmology. You will want
to download COM_CosmoParams_fullGrid_R2.00.tar.gz. Careful, that’s a huge file to download (3.6 GB)!

Extract everything into a directory, cd into that directory, and run this notebook.

%matplotlib inline
%config InlineBackend.figure_format = 'retina' # For mac users with Retina display

import numpy as np
from matplotlib import pyplot as plt
import pygtc

10 Chapter 1. Contents:

https://github.com/SebastianBocquet/pygtc/blob/master/Planck-vs-WMAP.ipynb
http://pla.esac.esa.int/pla/#cosmology

pygtc Documentation, Release 0.4

1.3.2 Read in and format the data

WMAP, Planck = [],[]
for i in range(1,5):

WMAP.append(np.loadtxt('./base/WMAP/base_WMAP_'+str(i)+'.txt'))
Planck.append(np.loadtxt('./base/plikHM_TT_lowTEB/base_plikHM_TT_lowTEB_'+str(i)+'.

→˓txt'))

Copy all four chains into a single array
WMAPall = np.concatenate((WMAP[0],WMAP[1],WMAP[2],WMAP[3]))
Planckall = np.concatenate((Planck[0],Planck[1],Planck[2],Planck[3]))

1.3.3 Select the parameters and make labels

In the chain directories, there are .paramnames files that allow you to find the parameters you are interested in.

WMAPplot = WMAPall[:,[2,3,4,5,6,7,9,15]]
Planckplot = Planckall[:,[2,3,4,5,6,7,23,29]]

Labels, pyGTC supports Tex enclosed in $..$
params = ('$\Omega_\mathrm{b}h^2$',

'$\Omega_\mathrm{c}h^2$',
'$100\\theta_\mathrm{MC}$',
'$\\tau$',
'$\ln(10^{10}A_s)$',
'n_s','H_0',
'$\\sigma_8$')

chainLabels = ('$Planck$ (TT+lowTEB)','WMAP')

1.3.4 Make the GTC!

Produce the plot and save it as Planck-vs-WMAP.pdf.

GTC = pygtc.plotGTC(chains=[Planckplot,WMAPplot],
weights=[Planckall[:,0],
WMAPall[:,0]],
paramNames=params,
chainLabels=chainLabels,
colorsOrder=('greens','blues'),
figureSize='APJ_page',
plotName='Planck-vs-WMAP.pdf')

1.3. Example 2: Making a GTC/triangle plot with Planck and WMAP data! 11

pygtc Documentation, Release 0.4

1.4 API

pygtc only has one user-facing function pygtc.plotGTC(), which generates the GTC/triangle plot. There are some
helper functions that generate the individual panels in the main GTC, but plotGTC has options to access these, so they
are only minimally documented here.

1.4.1 plotGTC()

pygtc.plotGTC(chains, **kwargs)
Make a great looking Giant Triangle Confusogram (GTC) with one line of code! A GTC is like a triangle (or
corner) plot, but you get to put as many sets of data, and overlay as many truths as you like. That’s what can
make it so confusing!

Parameters chains (array-like[nSamples,nDims] or a) – list[[nSamples1,nDims], [nSam-
ples2,nDims], . . .] All chains (where a chain is [nSamples,nDims]) in the list must have the same
number of dimensions. Note: If you are using emcee (http://dan.iel.fm/emcee/current/) - and you
should! - each element of chains is an EnsembleSampler.flatchain object.

Keyword Arguments

• weights (array-like[nSamples] or a list[[nSamples1], ...]) – Weights for
the sample points. The number of 1d arrays passed must correspond to the number of chains,
and each weights array must have the same length nSamples as its corresponding chain.

• chainLabels (array-like[nChains]) – A list of text labels describing each chain passed
to chains. len(chainLabels) must equal len(chains). chainLabels supports LaTex commands
enclosed in $..$. Additionally, you can pass None as a label. Default is None.

• paramNames (list-like[nDims]) – A list of text labels describing each dimension of
chains. len(paramNames) must equal nDims=chains[0].shape[1]. paramNames supports La-
Tex commands enclosed in $..$. Additionally, you can pass None as a label. Default is None,

12 Chapter 1. Contents:

http://dan.iel.fm/emcee/current/

pygtc Documentation, Release 0.4

however if you pass a pandas.DataFrame object, paramNames defaults to the DataFrame
column names.

• truths (list-like[nDims] or [[nDims], ...]) – A list of parameter values, one for
each parameter in chains to highlight in the GTC parameter space, or a list of lists of values
to highlight in the parameter space. For each set of truths passed to truths, there must be a
value corresponding to every dimension in chains, although any value may be None. Default
is None.

• truthLabels (list-like[nTruths]) – A list of labels, one for each list passed to truths.
truthLabels supports LaTex commands enclosed in $..$. Additionally, you can pass None as
a label. Default is None.

• truthColors (list-like[nTruths]) – User-defined colors for the truth lines, must be
one per set of truths passed to truths. Default color is gray #4d4d4d for up to three lines.

• truthLineStyles (list-like[nTruths]) – User-defined line styles for the truth lines,
must be one per set of truths passed to truths. Default line styles are ['--', ':',
'dashdot'].

• priors (list of tuples [(mu1, sigma1), ...]) – Each tuple describes a Gaussian
to be plotted over that parameter’s histogram. The number of priors must equal the number
of dimensions in chains. Default is None.

• plotName (string) – A path to save the GTC to in pdf form. Default is None.

• nContourLevels (int) – The number of contour levels to plot in the 2d histograms. May
be 1, 2, or 3. Default is 2.

• sigmaContourLevels (bool) – Whether you want 2d “sigma” contour levels (39%, 86%,
99%) instead of the standard contour levels (68%, 95%, 99%). Default is False.

• nBins (int) – An integer describing the number of bins used to compute the histograms.
Default is 30.

• smoothingKernel (float) – Size of the Gaussian smoothing kernel in bins. Default is 1.
Set to 0 for no smoothing.

• filledPlots (bool) – Whether you want the 2d contours and the 1d histograms to be filled.
Default is True.

• plotDensity (bool) – Whether you want to see the 2d density of points. Default is False.

• figureSize (float or string) – A number in inches describing the length = width of the
GTC, or a string indicating a predefined journal setting and whether the figure will span one
column or the full page width. Default is 70/dpi where dpi = plt.rcParams['figure.
dpi']. Options to choose from are 'APJ_column', 'APJ_page', 'MNRAS_column',
'MNRAS_page', 'AandA_column', 'AandA_page'.

• panelSpacing (string) – Options are 'loose' or 'tight'. Determines whether there is
some space between the subplots of the GTC or not. Default is 'tight'.

• legendMarker (string) – Options are 'All', 'None', 'Auto'. 'All' and 'None' force-
show or force-hide all label markers. 'Auto' shows label markers if two or more truths are
plotted.

• paramRanges (list of tuples [nDim]) – Set the boundaries of each parameter range.
Must provide a tuple for each dimension of chains. If None is provided for a parameter, the
range defaults to the width of the histogram.

1.4. API 13

pygtc Documentation, Release 0.4

• labelRotation (tuple [2]) – Rotate the tick labels by 45 degrees for less overlap. Sets
the x- and y-axis separately. Options are (True,True), (True,False), (False,True),
(False,False), None. Using None sets to default (True,True).

• tickShifts (tuple [2]) – Shift the x/y tick labels horizontally/vertically by a fraction of
the tick spacing. Example tickShifts = (0.1, 0.05) shifts the x-tick labels right by ten percent
of the tick spacing and shifts the y-tick labels up by five percent of the tick spacing. Default
is (0.1, 0.1). If tick rotation is turned off for either axis, then the corresponding shift is set to
zero.

• colorsOrder (list-like[nDims]) – The color order for chains passed to chains.
Default is ['blues', 'oranges', 'greens', 'reds', 'purples', 'browns',
'pinks', 'grays', 'yellows', 'cyans']. Currently, pygtc is limited to these color
values, so you can reorder them, but can’t yet define your own colors. If you really love the
old colors, you can get at them by calling: ['blues_old', 'greens_old', ...].

• do1dPlots (bool) – Whether or not 1d histrograms are plotted on the diagonal. Default is
True.

• doOnly1dPlot (bool) – Plot only ONE 1d histogram. If this is True, then chains must have
shape (samples,1). Default is False.

• mathTextFontSet (string) – Set font family for rendering LaTex. Default is 'stixsans'.
Set to None to use the default setting in your matplotlib rc. See Notes for known issues
regarding this keyword.

• customLabelFont (matplotlib.fontdict) – Full customization of label fonts. See mat-
plotlib for full documentation. Default is {'family':'Arial', 'size':9}.

• customLegendFont (matplotlib.fontdict) – Full customization of legend fonts. See
matplotlib for full documentation. Default is {'family':'Arial', 'size':9}.

• customTickFont (matplotlib.fontdict) – Full customization of tick label fonts. See
matplotlib for full documentation. Default is {'family':'Arial', 'size':6}. Attempt-
ing to set the color will result in an error.

• holdRC (bool) – Whether or not to reset rcParams back to default. You may wish to set this
to True if you are working in interactive mode (ie with IPython or in a JuPyter notebook)
and you want the plots that display to be identical to the plots that save in the pdf. See Notes
below for more information. Default is False.

Returns fig – You can do all sorts of fun things with this in terms of customization after it gets
returned. If you are using a JuPyter notebook with inline plotting enabled, you should assign a
variable to catch the return or else the figure will plot twice.

Return type matplotlib.figure object

Note: If you are calling plotGTC from within an interactive python session (ie via IPython or in a JuPyter
notebook), the label font in the saved pdf may differ from the plot that appears when calling matplotlib.
pyplot.show().

This will happen if the mathTextFontSet keyword sets a value that is different than the one stored in
rcParams['mathtext.fontset'] and you are using equations in your labels by enclosing them in $..$. The
output pdf will display correctly, but the interactive plot will use whatever is stored in the rcParams default to
render the text that is inside the $..$. Unfortunately, this is an oversight in matplotlib’s design, which only allows
one global location for specifying this setting. As a workaround, you can set holdRC = True when calling
plotGTC and it will not reset your rcParams back to their default state. Thus, when the figure renders in inter-
active mode, it will match the saved pdf. If you wish to reset your rcParams back to default at any point, you
can call matplotlib.rcdefaults(). However, if you are in a jupyter notebook and have set %matplotlib

14 Chapter 1. Contents:

pygtc Documentation, Release 0.4

inline, then calling matplotlib.rcdefaults() may not set things back the way they were, but rerunning
the line magic will.

This is all due to a bug in matplotlib that is slated to be fixed in the upcoming 2.0 release.

1.4.2 Helper functions

__plot2d()

pygtc.pygtc.__plot2d()
Plot a 2D histogram in a an axis object and return the axis with plot.

Parameters

• ax (matplotlib.pyplot.axis) – The axis on which to plot the 2D histogram

• nChains (int) – The number of chains to plot.

• chains2d (list-like) – A list of pairs of sample points in the form: [[chain1_x, chain1_y],
[chain2_x, chain2_y], . . .].

• weights (list-like) – Weights for the chains2d.

• nBins (int) – Number of bins (per side) for the 2d histogram.

• smoothingKernel (int) – Size of the Gaussian smoothing kernel in bins. Set to 0 for no
smoothing.

• filledPlots (bool) – Just contours, or filled contours?

• colors (list-like) – List of nChains tuples. Each tuple must have at least nContourLevels
colors.

• nContourLevels (int {1,2,3}) – How many contour levels?

• confLevels (list-like) – List of at least nContourLevels values for contour levels.

• truths2d (list-like) – A list of nChains tuples of the form: [(truth1_x, truth1_y), etc. . .].

• truthColors (list-like) – A list of colors for the truths.

• truthLineStyles (list-like) – A list of matplotlib linestyle descriptors, one for each
truth.

• plotDensity (bool) – Whether to show points density in addition to contours.

• myColorMap (list-like) – A list of nChains matplotlib colormap specifiers, or actual
colormaps.

Note: You should really just call this from the plotGTC function unless you have a strong need to work only
with an axis instead of a figure. . .

1.4. API 15

pygtc Documentation, Release 0.4

__plot1d()

pygtc.pygtc.__plot1d()
Plot the 1d histogram and optional prior.

Parameters

• ax (matplotlib.pyplot.axis) – Axis on which to plot the histogram(s)

• nChains (int) – How many chains are you passing?

• chains1d (list-like) – A list of nChains 1d chains: [chain1, chain2, etc. . .]

• weights (list-like) – A list of nChains weights.

• nBins (int) – How many histogram bins?

• smoothingKernel (int) – Number of bins to smooth over, 0 for no smoothing.

• filledPlots (bool) – Want the area under the curve filled in?

• colors (list-like) – List of nChains tuples. Each tuple must have at least two colors.

• truths1d (list-like) – List of truths to overplot on the histogram.

• truthColors (list-like) – One color for each truth.

• truthLineStyles (list-like) – One matplotlib linestyle specifier per truth.

• prior1d (tuple) – Normal distribution paramters (mu, sigma)

• priorColor (color) – The color to plot the prior.

Note: You should really just call this from the plotGTC function unless you have a strong need to work only
with an axis instead of a figure. . .

16 Chapter 1. Contents:

CHAPTER

TWO

CITATION

If you use pygtc to generate plots for a publication, please cite as:

@article{Bocquet2016,
doi = {10.21105/joss.00046},
url = {http://dx.doi.org/10.21105/joss.00046},
year = {2016},
month = {oct},
publisher = {The Open Journal},
volume = {1},
number = {6},
author = {Sebastian Bocquet and Faustin W. Carter},
title = {pygtc: beautiful parameter covariance plots (aka. Giant Triangle␣

→˓Confusograms)},
journal = {The Journal of Open Source Software}

}

17

pygtc Documentation, Release 0.4

18 Chapter 2. Citation

CHAPTER

THREE

CONTRIBUTIONS, PROBLEMS, QUESTIONS, RECOMMENDATIONS

Please report any problems or pitch new ideas on GitHub where pygtc is being developed. Bugs will be squashed ASAP
and feature requests will be seriously considered.

19

https://github.com/SebastianBocquet/pygtc/issues
https://doi.org/10.5281/zenodo.159091

pygtc Documentation, Release 0.4

20 Chapter 3. Contributions, problems, questions, recommendations

INDEX

Symbols
__plot1d() (in module pygtc.pygtc), 16
__plot2d() (in module pygtc.pygtc), 15

P
plotGTC() (in module pygtc), 12

21

	Contents:
	Installation
	Required packages
	Downloading and installing
	Development
	Running tests
	Contribution and/or bug reports

	Example 1: Making a GTC/triangle plot with pygtc
	Import dependencies
	Generate fake data
	Omit one parameter for one chain
	Minimal example
	Complete the figure
	Make figure publication ready
	Single 2d panel
	Single 1d panel

	Example 2: Making a GTC/triangle plot with Planck and WMAP data!
	Download the data
	Read in and format the data
	Select the parameters and make labels
	Make the GTC!

	API
	plotGTC()
	Helper functions
	__plot2d()
	__plot1d()

	Citation
	Contributions, problems, questions, recommendations
	Index

